Fifth Project Assessment

Jacob Dyer

November 2020

1 Section 5.1

Page 343
Problem 1: Find the distance between $(5,3)$ and $(-1,-5)$.

$$
8^{2}+6^{2}=100 \text { Answer: Distance }=100
$$

This problem was easy to do because it's just using Pythagoras Theorem so I didn't have too much trouble solving this.

Problem 3: Write an equation of the circle centered at $(8,-10)$ with radius 8 .

$$
8^{2}=\sqrt{(x-8)^{2}+(y+10)^{2}}
$$

Answer: $64=(x-8)^{2}+(y+10)^{2}$
This problem was weird at first but I was able to figure it out after reviewing the examples.

Problem 5: Write an equation of the circle centered at $(7,-2)$ that passes through (-10,0).

$$
\begin{aligned}
& r^{2}=(x-h)^{2}+(y-k)^{2} \\
& r^{2}=(-10-7)^{2}+(0+2)^{2} \\
& r^{2}=-17^{2}+2^{2} \\
& r^{2}=289+4
\end{aligned}
$$

Answer: $r=17.11$
Problem 5 was quite easy since it was replacing variables with numbers then using Pythagoras Theorem.

Problem 7: Write an equation for a circle where the points $(2,6)$ and $(8,10)$ lie along a diameter.

$$
\begin{aligned}
& d=\sqrt{(8-2)^{2}+(10-6)^{2}} \\
& d=\sqrt{6^{2}+4^{2}} \\
& d=\sqrt{52}
\end{aligned}
$$

Answer: d $=7.21$
This problem was easy since it's just finding the slope, radius and then solving for the diameter.

Problem 9: Sketch a graph of $(x-2)^{2}+(y+3)^{2}=9$.

Problem 11: Find the y intercept(s) of the circle with center $(2,3)$ with radius 3 .

Answer: y-intercepts $=(0,3+-\sqrt{5})$

Problem 13: At what point in the first quadrant does the line with equation $\mathrm{y} x=+25$ intersect a circle with radius 3 and center $(0,5)$?
$x^{2}+((2 x+5)-5)^{2}=9$
$x^{2}+2 x^{2}+9$
$5 x^{2}=9$

Answer: $\mathrm{x}=\sqrt{9 / 5}$
This was and easy question as well. After reviewing how to do it and drawing a picture the answer was easy to get.

Problem 17: A small radio transmitter broadcasts in a 53 mile radius. If you drive along a straight line from a city 70 miles north of the transmitter to a second city 74 miles east of the transmitter, during how much of the drive will you pick up a signal from the transmitter?

$$
\begin{aligned}
& x^{2}+y^{2}=53^{2} \\
& \left(\frac{-35}{37} x-74\right)=\left(\frac{-35}{37} x+70=y\right. \\
& y=-0.95 x+70 \\
& x^{2}+(-0.95 x+70)^{2}=53^{2} \\
& x^{2}+0.89 x^{2}-132.43+4900=2809 \\
& x^{2}+0.89 x^{2}-132.43 x+2091=0 \\
& x 24.1 \text { and } x 45.79
\end{aligned}
$$

$$
\mathrm{d}=\sqrt{(45.7924 .1)^{2}+(26.6847 .2)^{2}}=x 29.86
$$

Answer: 29.86 miles
I had some difficulty doing this problem but I was able to get the hang of it after having a classmate help me understand better.
(For the rest of the Sections I used a Scientific Calculator so it was hard to explain and show what I did since all I did was plug the problem in to it and got the answer.)

2 Section 5.2

Problem 5: Convert the angle $\frac{5 P i}{6}$ from radians to degrees
$\left(\frac{5 P i}{6}\right)\left(\frac{180 \text { degrees }}{P i}=150\right.$ degrees
Answer: 150 degrees
this easy was easy because all it is breaking down the problem and converting to a degree.

Problem 11: Find the angle between 0 and 2 Pi in radians that is co-terminal with the angle $\frac{26 P i}{9}$.

$$
\left(\frac{26 P i}{9}-2 P i\right)=\frac{26 P i}{9}-\frac{18 P i}{9}=\frac{8 P i}{9}
$$

Answer: $\frac{8 P i}{9}$
This was an easy question since all I had to do was subtract the fractions with similar denominators.

Problem 15: On a circle of radius 7 miles, find the length of the arc that subtends a central angle of 5 radians

$$
\begin{aligned}
& \mathrm{r}=7 \mathrm{~m} \\
& \mathrm{O}=5 \mathrm{rad} \\
& \mathrm{~s}=\mathrm{Or} \\
& \mathrm{~s}=(7 \mathrm{~m})(5)=35 \mathrm{~m}
\end{aligned}
$$

Answer: length $=35 \mathrm{~m}$
This was just some basic multiplication so it was easy to do
page 360
problem 25: A truck with 32-in.-diameter wheels is traveling at $60 \mathrm{mi} / \mathrm{h}$. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

```
\(\mathrm{D}=32\)
\(\mathrm{S}=60\)
60 miles per hour \(=1\) mile per minute
1 mile per hour \(=63360\) inches per minute
\(\mathrm{v}=63360\)
\(v=\frac{S}{t}\)
\(v=\frac{63360}{16}\)
\(\mathrm{v}=3960\)
rotations \(=\frac{3960}{2 P i}\)
Answer: 630.25 rotations per minute
```

This was easy because it's a simple version of some physics problems I had in high school

Page 361

Problem 31: You are standing on the equator of the Earth (radius 3960 miles). What is your linear and angular speed?
$\mathrm{r}=3960$

$$
\begin{aligned}
& w=\frac{O}{t} \\
& w=\frac{2 P i}{24}=\frac{P i}{12} \\
& \mathrm{v}=\mathrm{rw} \\
& V=\left(\frac{P i}{12}\right)(3960)
\end{aligned}
$$

Answer: $\mathrm{v}=1036.27$ miles per hour
This I had some trouble with but I was able to get a good understanding to do the problem.

$3 \quad$ Section 5.3

Page 373
Problem 1:Find the quadrant in which the terminal point determined by t lies if:
a. $\sin (\mathrm{t})<0$ and $\cos (\mathrm{t})<0$
b. $\sin (\mathrm{t})>0$ and $\cos (\mathrm{t})<0$

Answer A: They are both negative in quadrant III
Answer B: The point resides in quadrant II

Problem 3: The point P is on the unit circle. If the y -coordinate of P is $\frac{3}{5}$ and P is in quadrant II, find the x coordinate.

$$
\begin{aligned}
& \sin =\frac{3}{5} \\
& \sin +\cos =1 \\
& \frac{25}{25}-\frac{9}{25}=\frac{16}{25} \\
& \cos =+-\frac{4}{5} \\
& \text { Answer: } \frac{-4}{5}
\end{aligned}
$$

If $\cos (O)=\frac{1}{7}$ and O is in the 4 th quadrant, find $\sin (O)$
$\cos (\mathrm{O})=\frac{1}{49}$
$\sin (\mathrm{O})+\frac{4^{4}}{49}=1$
$\sin (O)=\frac{\sqrt{48}}{7}$
Answer: $\frac{4 \sqrt{3}}{-7}$

Problem 7: If $\sin (\mathrm{O})=\frac{3}{8}$ and O is in the 2 nd quadrant, find $\cos (\mathrm{O})$.
$\sin ^{2}(O)=\frac{3}{8}$
$64-9=\frac{85}{64}$
$\frac{64}{64}-\frac{9}{64}=\frac{55}{64}$

Answer: $\cos (\mathrm{O})=\frac{\sqrt{55}}{-8}$

Problem 11: For each of the following angles, find the reference angle and which quadrant the angle lies in. Then compute sine and cosine of the angle. A. $\frac{5 P i}{4}$ B. $\frac{7 P i}{6}$ C. $\frac{5 P i}{3}$ D. $\frac{3 P i}{4}$

Answers:
A. Reference angle is $\frac{P i}{4}$, Quadrant III, $\sin \left(\frac{5 P i}{4}=\frac{\sqrt{P i}}{-4}, \cos \left(\frac{5 P i}{4}=\frac{\sqrt{2}}{-2}\right.\right.$
B.Reference angle is $\frac{P i}{6}$, Quadrant III, $\sin \left(\frac{7 P i}{6}\right)=\frac{-1}{2}, \cos \left(\frac{7 P i}{6}\right)=\frac{\sqrt{3}}{-2}$
C. Reference angle is $\frac{P i}{3}$, Quadrant IV, $\sin \left(\frac{5 P i}{3}\right)=\frac{\sqrt{3}}{-2}, \cos \left(\frac{5 P i}{3}=\frac{1}{2}\right.$
D. Reference angle is $\frac{P i}{4}$, Quadrant II, $\sin \left(\frac{3 P i}{4}\right)=\frac{\sqrt{2}}{2}, \cos \left(\frac{3 P i}{4}=\frac{\sqrt{2}}{-2}\right.$

Page 374
Problem 13: Give exact values for $\sin (\mathrm{O})$ and $\cos (\mathrm{O})$ for each of these angles. A. $\frac{3 P i}{-4}$ B. $\frac{23 P i}{6}$ C. $\frac{P i}{-2}$ D. 5 Pi

Answers:
A. $\sin \left(\frac{\sqrt{3 P i}}{-4}\right)=\frac{\sqrt{2}}{-2}, \cos \left(\frac{\sqrt{3 P i}}{-4}\right)=\frac{\sqrt{2}}{-2}$

B $\sin \left(\frac{23 P i}{6}\right)=\frac{-1}{2}, \cos \left(\frac{23 P i}{6}\right)=\frac{\sqrt{3}}{2}$
C. $\sin \left(\frac{P i}{-2}\right)=-1, \cos \left(\frac{P i}{-2}\right)=0$
D. $\sin (5 P i)=0, \cos (5 P i)=-1$

$4 \quad$ Section 5.4

Page 382
Problem 3: If $\frac{5 P i}{6}=\mathrm{O}$, find exact values for $\sec (\mathrm{O}), \csc (\mathrm{O}), \tan (\mathrm{O}), \cot (\mathrm{O})$
Answers: $\sec \left(\frac{5 P i}{6}\right)=\frac{2 \sqrt{3}}{-2}, \csc \left(\frac{5 P i}{6}\right)=2, \tan \left(\frac{5 P i}{6}\right)=\frac{\sqrt{3}}{-3}, \cot \left(\frac{5 P i}{6}\right)=-\sqrt{3}$

Problem 11: If $\cos \left(\frac{1}{3}\right)=\mathrm{O}$, and O is in quadrant III, find $\sin (\mathrm{O}), \sec (\mathrm{O})$, $\csc (\mathrm{O}), \tan (\mathrm{O}), \cot (\mathrm{O})$

Answers: $\sin (\mathrm{O})=\frac{-2 \sqrt{2}}{3}, \sec (\mathrm{O})=-3, \csc (\mathrm{O})=\frac{3 \sqrt{2}}{4}, \tan (\mathrm{O})=2 \sqrt{2}, \cot (\mathrm{O})$ $=\frac{\sqrt{2}}{4}$

Page 383
Simplify the following to an expression involving a single trig function with no fractions

Problem 17: $\csc (\mathrm{t}) \tan (\mathrm{t})$
Answer: $\frac{1}{\sin (t)} x \frac{\sin (t)}{\cos (t)}=\frac{1}{\cos (t)}=\sec (t)$
Prove the identity
Problem 27: $\frac{\sin ^{2}(O)}{1+\cos (O)}=1-\cos (O)$
Answer: According to the Pythagorean identity; $\frac{\sin ^{2}(O)}{1+\cos (O)}=\frac{1-\cos ^{2}(O)}{1+\cos (O)}$ so $\cos (\mathrm{O})+\sin (\mathrm{O})=1$ which equals $\frac{(1-\cos (O))(1+\cos (O))}{1+\cos (O)}$ by factoring and $1-\cos (O)$ by subtraction.

5 Section 5.5

Page 391
In the triangle below, find $\sin (\mathrm{A}), \cos (\mathrm{A}), \tan (\mathrm{A}), \sec (\mathrm{A}), \csc (\mathrm{A}), \cot (\mathrm{A})$

Problem 1:

$10^{2}+8^{2}=164=\sqrt{164}=2 \sqrt{41}$
Answers:

$$
\begin{aligned}
& \sin (A)=\frac{10}{2 \sqrt{41}}=\frac{5}{\sqrt{41}} \\
& \cos (A)=\frac{8}{2 \sqrt{41}}=\frac{4}{\sqrt{41}} \\
& \tan (A)=\frac{10}{8}=\frac{5}{4} \\
& \sec (A)=\frac{1}{\frac{4}{\sqrt{41}}}=\frac{\sqrt{41}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \csc (A)=\frac{1}{\frac{5}{\sqrt{41}}}=\frac{\sqrt{41}}{5} \\
& \cot (A)=\frac{1}{\frac{5}{4}}=\frac{4}{5}
\end{aligned}
$$

In the following triangle, solve for the unknown sides and angles.

Problem 3:

Answers: $90+30+\mathrm{B}=180$
Angle B $=60$
$\sin (30)=\frac{7}{\sin (30)}=14$
side $\mathrm{c}=14$
$7^{2}+b^{2}=14^{2}$
$14^{2}-7^{2}=b^{2}$
$147=b^{2}$
side $\mathrm{b}=7 \sqrt{3}$
page 392

Problem 11: The angle of elevation to the top of a building in New York is found to be 9 degrees from the ground at a distance of 1 mile from the base of the building. Using this information, find the height of the building.

$$
\tan (9)=\frac{y}{1}
$$

Answer: y 836.27 ft

Problem 19:

$$
\begin{aligned}
& \tan (63)=\frac{82}{\tan (63)} \\
& \tan (39)=\frac{82}{\tan (39)} \\
& \mathrm{x}=\frac{82}{\tan (63)}+\frac{82}{\tan (39)} \\
& \text { Answer: } \mathrm{x} \quad 143.03
\end{aligned}
$$

